Graph-theoretic Techniques For Web Content Mining () von Adam Schenker

Graph-theoretic Techniques For Web Content Mining
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

249,99 €*

ISBN-13:
9789812569455
Veröffentl:
2005
Seiten:
248
Autor:
Adam Schenker
eBook Format:
PDF
eBook-Typ:
Reflowable
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung
This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors. Through the use of graph distance - a relatively new approach for determining graph similarity - the authors show how well-known algorithms, such as k-means clustering and k-nearest neighbors classification, can be easily extended to work with graphs instead of vectors. This allows for the utilization of additional information found in graph representations, while at the same time employing well-known, proven algorithms.To demonstrate and investigate these novel techniques, the authors have selected the domain of web content mining, which involves the clustering and classification of web documents based on their textual substance. Several methods of representing web document content by graphs are introduced; an interesting feature of these representations is that they allow for a polynomial time distance computation, something which is typically an NP-complete problem when using graphs. Experimental results are reported for both clustering and classification in three web document collections using a variety of graph representations, distance measures, and algorithm parameters.In addition, this book describes several other related topics, many of which provide excellent starting points for researchers and students interested in exploring this new area of machine learning further. These topics include creating graph-based multiple classifier ensembles through random node selection and visualization of graph-based data using multidimensional scaling.

 

Schlagwörter zu:

Graph-theoretic Techniques For Web Content Mining von Adam Schenker - mit der ISBN: 9789812569455

, Online-Buchhandlung


 

Kunden Rezensionen: Graph-theoretic Techniques For Web Content Mining | Buch oder eBook | Adam Schenker

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.


 

Kunden, die sich für: "Graph-theoretic Techniques For Web Content Mining" von Adam Schenker als Buch oder eBook

interessiert haben, schauten sich auch die folgenden Bücher & eBooks an: